
DATA STRUCTURES USING ‘C’

LectureLecture--0606

Data Structures

Introduction to DS Introduction to DS
DefinitionDefinition

An algorithm is a finite sequence of
instructions each of which has a clear
meaning and can be performed with a
finite amount of effort in a finite
length of time.

Structure of AlgorithmsStructure of Algorithms

Input step
Assignment step
Decision step
Repetitive step
Output step

Properties of AlgorithmProperties of Algorithm
Finiteness

• An algorithm must terminate after a finite number of
steps.

Definiteness
• Steps must be precisely defined.
• No ambiguity in steps.

Generality
• It must be generic enough to solve all problem of

same class
Effectiveness

• The steps of operations must be basic
• Not too much complex

 Input-Output
• It must have initial and precise inputs.
• Output may be generated both at intermediate and

final steps.

Data Structure and AlgorithmsData Structure and Algorithms

Data Structure
• A data structure is a way of organizing
data that considers not only the items
stored, but also their relationship to each
other.

The design of an efficient algorithm
for the solution of the problem needs
the use of appropriate data structure.

The program which satisfy all the
properties of algorithm is not enough
for efficient implementation of
algorithm.

ContCont……

It is important to arrange the data in
well structured manner to prepare
efficient algorithm.

Thus, for the design of efficient
solution of a problem, it is essential
that algorithm goes hand in hand
with appropriate data structure.

Efficiency of AlgorithmEfficiency of Algorithm

One problem can be solved in many
ways then to choose the best one
among them we required to measure
the performance of algorithm.

The performance of algorithm can be
measured by two main parameter:
• Time
• Space

Efficiency of Algorithm (Efficiency of Algorithm (ContCont…)…)

Empirical or posterior testing
approach
• Implement the complete algorithms and
execute them for various instances of the
problems.

• The time taken for execution of the
programs is noted.

• Algorithm taking less time is considered
as the best among all.

• Its disadvantage is that it depend on
various factors like –
machine on which it is executed.

Efficiency of Efficiency of Algorithm (Algorithm (ContCont…)…)

Programming language with which it is
implemented

Skills of a programmer
Theoretical or apriori approach

• Mathematically determine the resources
such as time and space needed by
algorithm in form of a function of a
parameter related to the instance of the
problem considered.

• This approach is entirely machine,
language and program independent.

• It allows to study the efficiency of the
algorithm on any input size instance.

Asymptotic NotationAsymptotic Notation

Apriori analysis uses asymptotic
notations to express the time
complexity of algorithms.

Asymptotic notations are meaningful
approximations of functions that
represent the time and space
complexity of a program.

Asymptotic Asymptotic Notation (Notation (ContCont…)…)

Big O notation
• f(n)=O(g(n)) (read: f of n is big oh of g of
n), if there exists a positive integer n0 and
a positive number c such that
|f(n)|≤c|g(n)|, for all n≥n0.

• It shows upper bound of a function.

f(n) g(n)
16n3+12n2+12n n3 f(n) = O(n3)

34n – 90 n f(n) = O(n)
56 1 f(n) = O(1)

Asymptotic Notation (Asymptotic Notation (ContCont…)…)

Omega notation
• f(n)=Ω(g(n))(read: f of n is omega of g of
n), if there exists a positive integer n0 and
a positive integer c such that
|f(n)|≥c|g(n)|, for all n≥n0.

• Here g(n) indicate the lower bound of the
function f(n).

f(n) g(n)
16n3+12n2+12n n3 f(n) = Ω(n3)

34n – 90 n f(n) = Ω(n)
56 1 f(n) = Ω(1)

Asymptotic Notation (Asymptotic Notation (ContCont…)…)

Thita notation
• f(n)= Ө(g(n))(read: f of n is thita of g of
n), if there exists a positive integer n0 and
a positive integer c1 and c2 such that
c1|g(n)| ≤ |f(n)| ≤c2|g(n)|, for all n≥n0.

• Here g(n) indicate the upper bound as
well as lower bound of the function f(n).

f(n) g(n)
16n3+12n2+12n n3 f(n) = Ө(n3)

34n – 90 n f(n) = Ө(n)
56 1 f(n) = Ө(1)

Asymptotic Notation (Asymptotic Notation (ContCont…)…)

Little oh notation
• f(n)=o(g(n)) (read: f of n is little oh of g
of n) if f(n)=O(g(n)) and f(n) ≠ Ω(g(n)).

f(n) g(n)
18n3 + 9 n3 f(n) = o(n3)

because
f(n) = O(n3) and

f(n) ≠ Ω(n3)

Average, Best and Worst CasesAverage, Best and Worst Cases

The time complexity of an algorithm
is dependent on parameters
associated with the input/output
instances of the problem.

Many times the input size is only used
to calculate the complexity, in such
cases if input size is larger then
execution time will be larger.

But all the time it is not appropriate
to consider only the size of input for
calculating complexity.

ContCont……

Sometimes, the complexity is also
depends on the nature of input.

For example, consider the following
data for sequentially searching the
first even number in the list.

Input data Case
-1, 3, 5, 7, -5, 11, -13, 17, 71, 9, 3, 1, -23, 39, 7, 40 Worst
6, 11, 25, 5, -5, 6, 23, -2, 26, 71, 9, 3, 1, -23, 39, 7 Best
-1, 3, 11, 5, 7, -5, -13, 16, 11, 25, 5, -5, 6, 23, -2, 7 Average

Worst case:
• The input instance for which algorithm takes the

maximum possible time is called the worst case.
• The time complexity in such a case is called worst

case time complexity.
 Best case:

• The input instance for which algorithm takes the
minimum possible time is called the best case.

• The time complexity in such a case is called best
case time complexity.

 Average case:
• All input instances which are neither of a best case

nor of a worst case are categorized as average
case.

• The time complexity of the algorithm in such cases
is referred to as the average case complexity.

